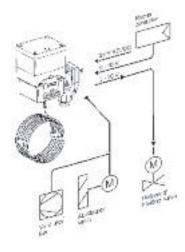


FTS

Zweiphasen-Frostschutzsteuerung

· mit Grenzwertkontakt und integrierter Maximalauswahl

Technische Daten


Speisespannung 24 V AC ± 20 % oder 24–36 V DC

Ausgangssignal 10 – 0 V + potentialfreier Umschaltkontakt

Leistungsaufnahme kabeleinführung Umschaltkontak max. 1 W 2 x M16 x 1,5

für Elektronik und Steckanschluss nach DIN 43650 für Grenzwertschalter

Schutzart IP 65

Funktion

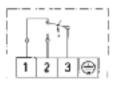
Die Frostschutzsteuerung erzeugt bei fallender Temperatur ein stetiges Ausgangssignal von 0–10 V. Bei weiter fallender Temperatur wird ein Grenzwertkontakt (einpolig umschaltend) betätigt.

Maximalauswahl

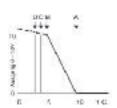
Wird das Ausgangssignal des Reglers (Y-Signal) durch die Frostschutzsteuerung hindurchgeschleift, findet eine Maximalauswahl der beiden Signale statt. Ist das Y-Signal vom Regler größer als das Ausgangssignal der Frostschutzsteuerung, bestimmt der Regler die Stellung des Heizventils (Normalbetrieb). Ist das Ausgangssignal der Frostschutzsteuerung größer als das Y-Signal des Reglers (Frost-gefahr), bestimmt die Frostschutzsteuerung die Stellung des Heizventils.

Selbstüberwachung

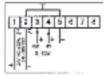
Der über die gesamte Länge wirksame Sensor ist selbstüberwachend, d. h. bei Bruch oder Beschädigung des Kapillarrohrs, wird "Frostgefahr" signalisiert. Wird das Signal des Reglers nicht durchgeschleift, gibt der FTS das Signal der Frostschutzsteuerung aus.


Kaskadenschaltungen

Zur Überwachung größerer Lufterhitzer lassen sich mehrere FTS in Kaskade verwenden.


Wirkungsbereich	Kapillarrohr	Туре	
103 °C	6 m	FTS 015	
103 °C	3 m	FTSB 015	

Lieferung einschließlich 5 Kapillarrohrhaltern Type H 3


Anschlusspläne Steckeranschluss

Ablaufschema

Klemmleiste

Frostschutzthermostate siehe Seite 60/61.

1. Phase Beg

A = 10 °C Beginn des Arbeitsbereichs

(bei fallender Temperatur)

B = 5 °C

2. Phase Ende des stetigen Bereichs

C = 4 °C

Schaltpunkt des Grenzwertkontakts D = 3 °C

D = 0 0

Mechanischer Anschlag an der Einstellspindel

Schutzart:

Achtung:

Bedingt durch die Umstellung des Kältemittels im Sensor verlängert sich der notwendige Abkühlungsbereich auf 70 cm. Deshalb ist es dringend ratsam, die gesamte Länge der Kapillare im Kanal zu verlegen.

Flüssigkeiten und Gase

Smart Temp TST

Temperaturtransmitter

Flüssigkeiten und Gase

Elektronischer Thermostat/Temperaturtransmitter

Der elektronische Thermostat Smart Temp wird überall dort eingesetzt, wo spezielle Überwachungsaufgaben, gepaart mit Schaltfunktionen, notwendig werden. Idealerweise kann das Gerät zur zweistufigen Temperaturregelung eingesetzt werden. Damit eignet sich Smart Temp optimal zur Temperatursteuerung im Maschinen- und Anlagenbau, der Fluidik, der Verfahrenstechnik und der Pneumatik, sowie zur Überwachung und Steuerung von Heizsystemen, Klimaschränken, Öfen und Garsystemen. Dank der kontinuierlich ausbaufähigen Sensorik kommen zu den genannten Anwendungen ständig neue Möglichkeiten hinzu. In der Ausführung TST...-R können Schaltsignale potentialfrei über einen Relaiskontakt ausgegeben werden.

PZ

Temperaturtransmitter 4 - 20 mA, (2-Leiter) im Edelstahl-Gehäuse

Die Temperaturtransmitter bestehen aus Schutzrohr und Gehäuse aus Edelstahl (1.4571). Als Sensor wird ein Pt 100, Klasse A nach DIN IEC 751 verwendet. Der Messumformer ist im Gehäuse eingebaut und wird auf Kundenwunsch beliebig zwischen -50°C und +400°C werksseitig konfiguriert. Kabeleinführung M16x1.5, Schutzart IP 67, maximal zulässige Temperatur am Messumformer: 80 °C. Speisespannung: 12 – 36 V DC. Ausgangssignal 4 – 20 mA

Konfiguration über ZFT 4900

Der gewünschte Temperaturbereich ist zwischen -50... +400 °C werksseitig beliebig konfigurierbar. Gewünschten Temperaturbereich bei der Bestellung bitte mit wie im Bestellbeispiel angeben.

Bestellbeispiel:

PZ100-S

+ ZFT4900: -25 / +400°C Messbereichsanfang: (4mA)

Bsp.

- 2 5

Messbereichsende: (20mA)

+	4	0	0	
				00

Transmitter mit Tauchfühler (Einschraubgewinde G1/2", 6 mm ø)

Туре	Eintauchtiefe	Max. zul. Druck (bar)	
PZ100-S	100	100	
PZ150-S	150	100	
PZ200-S	200	100	
PZ250-S	250	100	

Zubehör Tauchhülsen (gesondert zu bestellen)

ZFT 4900

Tauchrohre (Einschraubgewinde G1/2")

Туре	Eintauchtiefe	Anschluss	Max. zul. Druck (bar)	
.,,,,		7111001111400	maxi zan Braok (Sar)	
G12-100	100	G1/2"	100	
G12-150	150	G1/2"	100	
G12-200	200	G1/2"	100	
G12-250	250	G1/2"	100	
R12-100	100	R1/2"	100	
R12-150	150	R1/2"	100	
R12-200	200	R1/2"	100	
R12-250	250	R1/2"	100	
N12-100	100	1/2" NPT	100	
N12-150	150	1/2" NPT	100	
N12-200	200	1/2" NPT	100	
N12-250	250	1/2" NPT	100	